Trigonometry

This picture is great! It summarizes practically all of the basic relations between the trigonometric functions at once.

- Every right triangle in the picture gives you a trig identity by the Pythagorean theorem:
from the sublime (and famous)

$$
\begin{aligned}
& \square \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \square 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& \square 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

to the ridiculous (try this out on your friends in Engineering!)

$$
\csc ^{2} \theta+\sec ^{2} \theta=(\tan \theta+\cot \theta)^{2}
$$

Points to ponder:

How long is the arc from the x-axis to where the radius intersects the circle?
How long would it be if the radius were 2?
How would the labels in the picture have to change if the radius were 2? (the unit circle is nice, eh?) This picture shows θ in the first quadrant. How would it be different if θ were in each of the other quadrants?
\square In particular, in each quadrant what happens to the sign (plus or minus) of:

Quadrant	I	II	III	IV
$\sin \theta$	+			
$\csc \theta$	+			
$\cos \theta$	+			
$\sec \theta$	+			
$\tan \theta$	+			
$\cot \theta$	+			

- If the x - and y - axes are labelled as usual, even most of the signs above "take care of themselves" from the picture. (i.e. The coordinate axes show you the sign directly.) \square Which do not?

