Trigonometry

...a synopsis.

This picture is great! It summarizes practically all of the basic relations between the trigonometric functions at once.

• Every right triangle in the picture gives you a trig identity by the Pythagorean theorem:

by Dick Furnas

from the sublime (and famous) $\Box \sin^2 \theta + \cos^2 \theta = 1$ $\Box 1 + \tan^2 \theta = \sec^2 \theta$ $\Box 1 + \cot^2 \theta = \csc^2 \theta$

to the ridiculous (try this out on your friends in Engineering!) $\csc^2 \theta + \sec^2 \theta = (\tan \theta + \cot \theta)^2$

Points to ponder:

- \Box How long is the arc from the *x*-axis to where the radius intersects the circle?
- \Box How long would it be if the radius were 2?
- □ How would the labels in the picture have to change if the radius were 2? (the unit circle is nice, eh?)
- \Box This picture shows θ in the first quadrant. How would it be different if θ were in each of the other quadrants?
- \Box In particular, in each quadrant what happens to the sign (plus or minus) of:

Quadrant		II		IV
sin θ	+			
csc θ	+			
$\cos \theta$	+			
$\text{sec }\theta$	+			
tan θ	+			
cot θ	+			

• If the x- and y- axes are labelled as usual, even most of the signs above "take care of themselves" from the picture. (*i.e. The* coordinate axes show you the sign directly.)

